
Week 13 - Wednesday



 What did we talk about last time?
 Simulations
 UML
 Fish and bears example









 Here is a UML class diagram for the 
World class

World

maxX
maxY
thingList
grid
turtle
screen

draw
getMaxX
getMaxY
addThing
deleteThing
moveThing
live
emptyLocation
lookAtLocation



 Here is a UML class diagram for the 
Bear class

Bear

x
y
world
breedTick
starveTick
turtle

getX
getY
setX
setY
setWorld
appear
hide
move
live
tryToBreed
tryToMove
tryToEat



 Here is a UML class diagram for the 
Fish class

Fish

x
y
world
breedTick
turtle

getX
getY
setX
setY
setWorld
appear
hide
move
live
tryToMove





 Create a constructor for Bear with the following header:

 It should:
 Create a turtle
 Put the turtle's tail up
 Hide the turtle
 Set the turtle's shape to a square (since we don't have cool bear and fish pictures like the book 

does)
 Set the x and y to 0
 Set the world to None
 Set the breedTick to 0
 Set the starveTick to 0

def __init__(self):



 Write the following accessors for Bear

def getX(self):

def getY(self):



 Write the following mutators for Bear

def setX(self):

def setY(self):

def setWorld(self):

def appear(self): # move turtle to x and y and show

def hide(self): # hide turtle



 Write a method with the following header:

 It should:
 Tell world to move a thing from the current x and y to the new ones
 Set the x and y values to the new ones
 Move the turtle the new location as well

def move(self, newX, newY):



 The following code creates a World and places Fish and Bear objects

bearCount = 10
fishCount = 10
worldLife = 2500
width = 50
height = 25
world = World(width, height)
world.draw()
for i in range(fishCount):

fish = Fish()
x = random.randrange(width)
y = random.randrange(height)
while not world.emptyLocation(x, y):

x = random.randrange(width)
y = random.randrange(height)

world.addThing(fish, x, y)
for i in range(bearCount):

bear = Bear()
x = random.randrange(width)
y = random.randrange(height)
while not world.emptyLocation(x, y):

x = random.randrange(width)
y = random.randrange(height)

world.addThing(bear, x, y)



 Now we can create Fish and Bear objects and put them in a 
World object

 The next step is to give them behaviors:
 Moving
 Breeding
 Eating

 We can even add other kinds of objects to the ecosystem





 Types are pretty loose in Python
 You can say x = 5 and later x = 'goat', and xwill have 

a different type based on what's inside of it
 You can use the type() function to see what the type of 

something currently is

x = 5
print(type(x)) # prints <class 'int'>
x = 'goat'
print(type(x)) # prints <class 'str'>



 If you want to test to see if a variable has a certain type, you 
can also use the isinstance() function

 It's useful for if statements
 It will also help us find out if an object is a Fish or a Bear

x = 5
if isinstance(x, int):

print("It's an int!")
else:

print("What's going on?")





 There are a few ways to look at the eight 
neighboring spaces around a fish (or a 
bear)

 One way is to look at all the offsets from 
a list

 For example, if your location is (x, y), you 
can add each of the following offsets to 
get all possible neighboring locations:

(x - 1, y + 1) (x, y + 1) (x + 1, y + 1)

(x - 1, y) (x, y) (x +1, y)

(x - 1, y - 1) (x , y - 1) (x + 1, y - 1)

offsets = [(-1,1), (0,1), (1,1), (-1,0), (1,0), (-1,-1), (0,-1), (1,-1)]



 When a fish gets a turn to live, this is what it does:
 Counts the fish that are near it (occupying the eight neighboring spaces)
 If there are two or more neighboring fish, it dies (removing itself from the 

world)
 Otherwise,
▪ Increase its breeding counter by one
▪ If its breeding counter is twelve or more,
▪ Try to breed

▪ Try to move

def live(self):



 Write a method with the following header:

 It should:
 Randomly pick a location using the list of eight possible offsets
 (Keep picking offsets if the location is out of bounds)
 If the random location is empty,
▪ Create a new fish in that location
▪ Add the new object to the world
▪ Set its breeding counter to 0

def tryToBreed(self):



 Write a method with the following header:

 It should:
 Randomly pick a location using the list of eight possible offsets
 (Keep picking offsets if the location is out of bounds)
 If the random location is empty,
▪ Move to that location

def tryToMove(self):





 When a bear gets a turn to live, this is what it does:
 Increase its breeding counter by one
 If its breeding counter is eight or more,
▪ Try to breed

 It should try to eat
 If its starving counter is ten,
▪ It dies (removing itself from the world)

 Otherwise,
▪ Try to move

def live(self):



 Write a method with the following header (which works almost 
exactly like the same method for Fish):

 It should:
 Randomly pick a location using the list of eight possible offsets
 (Keep picking offsets if the location is out of bounds)
 If the random location is empty,
▪ Create a new bear in that location
▪ Add the new object to the world
▪ Set its breeding counter to 0

def tryToBreed(self):



 Write a method with the following header (which works 
exactly like the same method for Fish):

 It should:
 Randomly pick a location using the list of eight possible offsets
 (Keep picking offsets if the location is out of bounds)
 If the random location is empty,
▪ Move to that location

def tryToMove(self):



 Write a method with the following header :

 It should:
 Look through all eight neighbors, using the list of offsets

▪ If any of those neighbors is not empty and is also a fish,
▪ Add that fish to a list of possible prey

 If there is at least one fish in the list of prey,
▪ Randomly pick one
▪ Delete that fish from the world
▪ Move to the location of that fish
▪ Set the starving counter to zero

 Otherwise,
▪ Increase the starving counter

def tryToEat(self):



 After all the classes have been written and the code to place 
the initial set of Bear and Fish objects runs, we only need 
one short loop to run the simulation

for i in range(worldLife):
world.live()







 Introduce inheritance
 Work time for Assignment 9



 Finish Assignment 9
 Due Friday

 Start reading Chapter 12


	COMP 1800
	Last time
	Questions?
	Assignment 9
	Fish and Bears
	Class diagram for World
	Class diagram for Bear
	Class diagram for Fish
	Bear Class
	Implementing Bear
	Accessors for Bear
	Mutators for Bear
	move() method for Bear
	Code to place Fish and Bear objects
	Coming up
	isinstance()
	Determining types in Python
	isinstance()
	Fish Behavior
	Searching the neighborhood
	Fish life
	tryToBreed() method for Fish
	tryToMove() method for Fish
	Bear Behavior
	Bear life
	tryToBreed() method for Bear
	tryToMove() method for Bear
	tryToEat() method for Bear
	Finishing the simulation
	Quiz
	Upcoming
	Next time…
	Reminders

